
     Amateur-radio Applications of the Fast Fourier Transform
     ========================================================

1. Introduction
---------------
     The Fast Fourier Transform (FFT) is a very efficient
numerical algorithm to compute a discrete Fourier transform.
The FFT algorithm has found many different applications and it
is not limited only to digital computers and digital signal
processing. For example, a completely analog implementation of
the FFT algorithm can be made with a number of 3dB directional
couplers and delay lines to feed an antenna array.
     Obviously the FFT algorithm is widely used in digital
signal processing too. In this article a particular DSP
application of the FFT algorithm is described and
discussed in detail: FFT spectrum analysis. Since the FFT
algorithm can be implemented on almost any digital computer
and a FFT spectrum analyzer only requires a little additional
hardware, FFT spectrum analysis is very convenient for many
practical applications.
     In order to understand the operation of a FFT spectrum
analyzer and its advantages and drawbacks when compared with
other spectrum analysis techniques, a short description of
the various Fourier transforms and the operation of the FFT
algorithm is included. Building a practically working spectrum
analyzer around the bare FFT algorithm is also discussed.
No mathematical proofs are given just to keep the discussion
as simple as possible. The interested reader can find the
former in almost any book describing digital signal processing.
     Although FFT spectrum analysis is presently limited to the
audio frequency range, at least for amateur resources, it has
many amateur-radio applications ranging from weak signal
detection to modulation analysis. A few typical amateur
applications are discussed later in this article, including
spectrum function plots and intensity spectrograms obtained
from real signals using a FFT spectrum analyzer.
     Finally, a FFT spectrum-analyzer program for the DSP
computer described in UKW-Berichte/VHF-Communications is
presented, including a short description of its commands and
performance limits imposed by the hardware. All the practical
examples shown in this article were obtained with this
software: most figures are just hard-copy prints of the computer
screen on a laser printer.

2. The Fourier Transform and the Discrete Fourier Transform
-----------------------------------------------------------
     The Fourier transform is a mathematical operation that
computes a new function F(w) from an original function f(t),
as shown on Fig. 2.1. Both functions have real arguments
t and w while their values f(t) and F(w) are in general complex
numbers. F(w) is called the Fourier transform of a given



function f(t). The Fourier transform has some interesting
properties including a relatively simple inverse operation:
computing f(t) back from a given F(w) is very similar to the
Fourier transform itself.
     The Fourier transform is frequently used in physics to
compute the frequency spectrum of a time-dependent physical
quantity. In a physical problem t represents time and f(t)
represents a physical quantity (force, displacement, pressure,
electrical current or voltage) as a function of time. In all
physical problems f(t) is a real function. The new variable
w represents the frequency and the function F(w) is the
frequency spectrum of the physical quantity observed. The
frequency spectrum is a complex function of a real variable w.
The absolute value of F(w) represents the magnitude of a given
spectral component and the argument of F(w) represents the
phase relative to the (chosen) time origin. Since f(t) is
always a real function one does not really need to compute
F(w) for negative frequencies: F(-w) is simply the
complex-conjugate of F(w) for a real f(t).
     While the Fourier transform is a powerful analytical tool
to perform theoretical computations it has at least two
constraints which could never be fulfilled in practice:
infinite bandwidth and infinite frequency resolution (which
implies an infinite observation time), regardless of the method,
analog or digital, used to perform the Fourier transform.
     A real-world, finite-bandwidth signal can be sampled
without loosing any information provided that the sampling
frequency is high enough, at least twice the signal bandwidth.
The Fourier transform of a sampled signal is shown on Fig. 2.2.
The integral is replaced with a sum, the bounds of the sum are
however still infinite. An important difference should be
noticed in plot of F(w): the spectrum of a sampled signal is
a periodic function and its period is inversely proportional
to the sampling period. It is therefore sufficient to
compute (either in an analog or in a digital way) just one
period of F(w), usually between -PI/deltat and +PI/deltat.
     The (original) Fourier transform integral (or sum) has
infinite bounds: the integration (or summation) should be
performed from minus infinity to plus infinity. Of course
no real-world signal will ever last that long! It is
therefore completely sufficient to compute the integral or
the sum only over the time interval when the signal exists.
Integrating over a finite amount of time limits the frequency
resolution, which is inversely proportional to the integration
time. This implies that the frequency spectrum could also be
represented by discrete samples in place of a continuous
function.
     The procedure that computes a finite number of spectral
lines from a finite number of signal samples is called the
Discrete Fourier Transform (DFT) and is shown on Fig. 2.3. To
properly describe the signal spectrum one needs at least the
same number of frequency samples as there are input signal
samples. Of course, to obtain meaningful results, the frequency
interval (spectral line spacing) has to be chosen in a close
relationship to the time interval (signal sampling step).
Similar constraints also apply to a completely analog Fourier



transform (analog spectrum analyzer).
     In order to simplify computations, both time and frequency
units are usually normalized to 1 as shown on Fig. 2.4. Time t
now only takes the values of 0, 1, 2, ... (N-1) and frequency w
also takes the values of 0, 1, 2, ... (N-1), if the discrete
Fourier transform produces N spectral lines from N signal
samples. As a result of this normalization the constant 2*PI/N
appears in the complex exponent function. This constant is
chosen such that the resulting spectral lines cover exactly
one period of the periodic signal spectrum.
     The DFT can be computed on any general-purpose computer.
Its operation is similar to N bandpass FIR filters, each filter
having N stages and tuned to its own frequency. The DFT is not
computationally efficient, since the number of computations
required increases with N^2. If the DFT is computed on a real
signal (real f(t)) with N signal samples, then the result only
includes N/2 spectral lines ranging from zero to half the
sampling frequency. The remaining N/2 spectral lines are simply
complex conjugates that can be computed in a much simpler
way once the first N/2 spectral lines are known, reducing the
total number of computations required to about N^2/2.

3. The Fast Fourier Transform (FFT) algorithm
---------------------------------------------
     The Discrete Fourier Transform supplies a very useful
result, but unfortunately requires a very large number of
computations on a digital computer or a very large number of
components if performed by an analog circuit. A more efficient
algorithm that provides exactly the same result as DFT with
a considerably smaller effort required is called the Fast
Fourier Transform. As an example, to compute a 1024 data point
DFT the FFT algorithm requires about 200 times less
computations (or analog components) than a straightforward DFT.
Further, the number of computations required in the FFT
algorithm is only proportional to N/2*log2(N). The FFT
algorithm can therefore be performed on a very large number of
data samples without significantly increasing the number of
computations per sample.
     The basic building block of the FFT algorithm is called
a "butterfly" operation. A "butterfly" operation consists of
a phase-shift operation and a sum/difference operation. It
operates on two input variables and produces two results. A
single "butterfly" operation can already compute a 2-point FFT,
as shown on Fig. 3.1. In the case of a 2-point FFT, the two
input variables are the input data to the FFT algorithm and the
two results are already the result of the algorithm. The phase
shift is equal to PI in this case.
     Fig. 3.2. shows how a 4-point FFT works. A 4-point FFT is
computed in two stages. Each stage includes two "butterfly"
operations. In the first stage, all phase shifts are equal to
PI. In the second stage, the phase shifts are PI/2 and PI.
Note that each output of the first stage "butterflies" is fed
to exactly one input of the second stage "butterflies".
Considering the periodicity of the complex exponent function



the four outputs correspond exactly to the result obtained
with a straightforward DFT, the latter however requires 16
phase shifts (8 if one does not consider zero phase shifts)
compared to the 4 phase shifts of the FFT algorithm.
     Similarly, a 8-point FFT is computed in three stages as
shown on Fig. 3.3. Each stage includes 4 "butterfly"
operations. Again, in the first stage all phase shifts are
equal to PI. In the second stage the phase shifts are PI/2 and
PI. In the third stage the phase shifts are PI/4, PI/2, 3*PI/4
and PI. The algorithm block diagram follows a regular pattern
too, suggesting that a FFT algorithm working on an arbitrary
large number of samples could be designed in a similar way.
In the case of an 8-point FFT only 12 "butterflies" are
required compared to the 64 shift/add operations of a
straightforward DFT algorithm to get the same result.
     To design FFT algorithms operating on an even larger
number of data samples one should therefore investigate the
possibility of combining several FFTs computed on a smaller
number of samples. Fig. 3.4. shows how to combine two N-point
transforms (not necessarily computed using the FFT algorithm)
into one single transform on 2N (twice the number of) points.
In addition to the two N-point transforms, N "butterflies" are
required. These "butterflies" require N different phase shifts
ranging from PI/N, 2*PI/N, 3*PI/N ... (N-1)*PI/N, PI in steps
of PI/N.
     The principle shown on Fig. 3.4. is in fact used to design
a FFT algorithm operating on any data length N that is a power
of 2. A FFT algorithm can thus operate on 2, 4, 8, 16, 32, 64,
128, 256, 512, 1024... data points. The 4-point FFT can be
derived from the 2-point FFT, the 8-point FFT can be derived
from the 4-point FFT, the 16-point FFT can be derived from the
8-point FFT etc... Each doubling of the data points only
requires an additional stage so the total number of stages is
equal to log2(N). Each stage requires N/2 "butterflies". The
total number of "butterfly" operations is therefore equal to
N/2*log2(N).
     A quick look at Fig. 3.3. shows that the results do not
appear in any reasonable order at the output of the FFT
algorithm: 1, 5, 3, 7, 2, 6, 4, 0. Considering the construction
principle shown on Fig. 3.4. a very simple rule to find the
desired output can be found. This rule is called bit-reversed
addressing and it is shown on Fig. 3.5. for the 8-point FFT
example. To find an output number one has to take the
corresponding input number, write this number down in binary
format, reverse the order of bits, convert the number back
to decimal and add 1. This rule can be easily implemented in
digital hardware (dedicated DSP microprocessors), where data is
stored in consecutive memory locations.
     To implement the FFT algorithm a number of "butterfly"
operations have to be performed. An analog implementation
called the "Butler matrix" uses delay lines to obtain phase
shifts and "rat-race" hybrids or 3dB directional couplers
for the add/subtract operations. The inputs of the FFT circuit
are connected to the elements of a linear antenna array and the
outputs of the FFT circuit to receivers and/or transmitters.
Since the required phases and magnitudes of the signals



feeding an antenna array are the Fourier transform of the
desired radiation pattern, the outputs of the FFT circuit
correspond directly to beams in the various directions.
     Implementing the FFT algorithm on a digital computer
most operations are performed with complex numbers. Although
phase shifts are easier to perform if complex numbers are
held in a magnitude/phase format, sums and differences require
a real/imaginary-component number format. Since conversions
from one number format to another are very time consuming all
computations are usually done in the real/imaginary-component
format. In this case a phase shift operation requires four real
multiplications with coefficients from a precomputed table of
phase shifts and two additions. Each summation of two
complex numbers requires two real summations and each complex
difference requires two real differences.
     The phase-shift coefficients are precomputed and stored
in memory, since only N different coefficients are required
in all stages of a N-point FFT. The same coefficients can be
used in the following FFT, if a number of FFTs have to be
computed on changing data. Finally, the phase-coefficient table
includes sines and cosines which are much more time-consuming
to compute than the multiplications and additions required for
the FFT itself.
     If a FFT is computed on real data, then only half of the
outputs contain interesting data, the other half are just
complex conjugates. To use the algorithm more efficiently
another set of input data can be fitted into the imaginary
part of the input variables. After the FFT algorithm is
performed, the two results can be separated by simple additions
and subtractions using the symmetry laws of the Fourier
transform. If desired, the two results can be further combined
into a single, double length FFT.
     The inverse DFT can easily be performed using the FFT
algorithm in the reverse direction. The number of mathematical
operations is identical except for an additional division by N
for each data point to obtain the original magnitude back.
     There are even more efficient algorithms to compute a DFT
or its inverse. All of them are however based on the FFT
principle described above and require a little more programming
efforts to further reduce the number of computations required.

4. Spectrum analysis using the FFT algorithm
--------------------------------------------
     One of the most obvious applications of the FFT algorithm
is a FFT spectrum analyzer. The FFT algorithm itself is
performed on a digital computer, usually a DSP microprocessor.
The input signal is provided in a digital format from an A/D
converter. The microprocessor itself can display the result in
a variety of formats.
     However, to build a digital FFT spectrum analyzer some
additional functions are required. A block diagram of a
DSP microprocessor-based spectrum analyzer is shown on
Fig. 4.1. The analog input signal is first sent to an analog
low-pass (band-pass) filter to prevent aliasing like in any DSP



application. The analog filter is followed by a sample-and-hold
and an A/D converter. The A/D converter feeds a buffer memory,
since the FFT algorithm operates on blocks of data. Before the
FFT the signal samples may be weighted optionally. The complex
spectrum provided by the FFT algorithm is used to compute the
magnitudes of the spectral components, the phase information is
discarded. Averaging is used to improve the signal-to-noise
ratio in some measurements. An optional linear-to-logarithmic
conversion is standard for all spectrum analyzers. Finally, the
result can be displayed in different formats and a conventional
computer printer can be used to obtain a hard-copy.
     The performance of a DSP FFT spectrum analyzer is mainly
limited by the performance of the A/D converter used. The
conversion speed of the A/D converter defines the maximum
bandwidth and the resolution of the A/D converter defines the
available dynamic range. After the A/D converter the digitized
input signal can be conveniently stored in memory if the
microprocessor is unable to process the data in real time.
Also all suitable microprocessors offer a computational
accuracy of at least 16-24bits allowing a much wider dynamic
range than any A/D converter.
     Even if the DSP microprocessor is fast enough to
process all of the data in real time, the input data stream
has to be sent to a buffer memory first, since the FFT
algorithm operates on blocks of data, not on single samples.
Without weighting FFTs are usually performed on contiguous, but
non-overlapping blocks of data to obtain almost all of the
spectral information contained in the input signal.
     In the case of input signal weighting, the contribution
of the samples at the beginning or at the end of a block is
very limited. To use all of the information contained in the
input signal overlapped FFTs have to be performed. Both cases
are shown on Fig. 4.2. In the second case the overlap is set to
about 50% for a raised-cosine weighting function.
     If the FFT algorithm is performed on a raw, unweighted
block of data, the corresponding spectrum is distorted. Since
the FFT does not consider any data samples before the block nor
any data samples after the processed block of data, the actual
input signal to the FFT algorithm corresponds to the real input
signal modulated with a rectangular impulse of the length of
the data block. A rectangular impulse with steep leading and
trailing edges has a very wide frequency spectrum of the form
sin(X)/X. The resulting output will be the real signal spectrum
convoluted with the sin(X)/X function.
     Although the real signal spectrum can not be obtained
since it requires an infinite amount of time, a much more
accurate spectrum can be obtained by weighting the signal
samples as shown on Fig. 4.3. Weighting means multiplying each
signal sample with a constant whose value depends on the
position of the sample inside the input data block. The
practical effect of weighting is to replace the abrupt ON/OFF
transitions with smooth transitions at the beginning and at the
end of the data block. Weighting functions are selected to
minimize the distortion of the signal spectrum. Raised-cosine
and Gaussian functions are usual choices, since they have a
very narrow own spectrum with low side lobes.



     The effects of no weighting versus weighting are shown on
Fig. 4.4. The two plots show the spectrum of the same signal
obtained in two different ways. A linear 512-point frequency
scale is used on the horizontal axis and a logarithmic
amplitude scale (15bits or 90dB/full scale) is used on the
vertical axis. All the parameters, including the input signal,
are the same for both plots except for weighting: the plot
above was obtained without any weighting while the plot below
was obtained with a raised-cosine weighting. Raised-cosine
weighting clearly provides much more clear spectral lines,
with no INEXSISTENT sidebands. On the other hand, weighting
slightly reduces the frequency resolution making the peaks
broader. Selecting weighting or not is therefore a trade-off
between dynamic range and frequency resolution.
     The Fourier transform is computed on real data only,
therefore the FFT algorithm can be used in a more efficient
way: either to produce two independent transforms at the same
time or a double length transform. The Fourier transform and
the FFT algorithm provide a complex signal spectrum: each
spectral line is represented by a complex number in the
real/imaginary-component format. The phase information
represented by the argument of the complex numbers is usually
discarded, since the timing relationship between the spectrum
analyzer time base and the signal examined is usually not
known. To compute the magnitude from the real and imaginary
components, two multiplications, one addition and one square
root are required for each sample. Unfortunately the square
root is a very time-consuming operation on most computers.
     If a measurement is affected by random noise, averaging
among a number of otherwise identical measurements improves the
accuracy of the result. Automatic averaging is very easy to
implement on any microprocessor-controlled test equipment.
Averaging is used in spectrum analyzers to improve the
signal-to-noise ratio of the displayed data. The improvement
that can be obtained by averaging is shown on Fig. 4.5. and
Fig. 4.6. All four plots were obtained from the same input
signal in an identical way except for different amounts of
averaging.
     The linear-to-logarithmic conversion includes the
computation of a logarithm for each spectral component. Since
the logarithm is a rather "slow" function on digital computers,
a lookup-table algorithm or a similar approach has to be used
to avoid unnecessary loading of the computer. The same
constraint applies to the display procedure: most computers
require more time to draw a high-resolution plot than to
compute the FFT algorithm. The display routine and/or
dedicated hardware has to be quick enough to avoid slowing-down
the spectrum analyzer. On the other hand, a hard-copy of the
video display is usually very easy to obtain on any computer
using a standard printer or plotter, at least when compared to
analog instrumentation with CRT displays.
     Besides the conventional frequency/amplitude function plot
other types of display are possible on digital computers.
A practically very useful type of display is the intensity
spectrogram. In the latter frequency is still plotted on the
horizontal axis. Each FFT result is however represented by a



single image line and the pixel brightness is used to represent
the magnitude of a spectral component. The results of
successive FFTs are plotted on successive lines, showing the
results of a large number of consecutive measurements on just
one computer screen. Intensity spectrograms are useful when
analyzing continuously changing signals.
     The display of a FFT spectrum analyzer usually includes
the complete frequency range covered by the FFT algorithm:
from zero to half the signal sampling frequency. The frequency
resolution is then simply equal to the frequency span divided
by the number of lines displayed. The frequency resolution may
be slightly worse if weighting is used in front of the FFT
algorithm. Of course partial displays are possible too, showing
just a subset of spectral lines computed by the FFT algorithm.
The sample-and-hold circuit in front of the A/D converter is an
excellent harmonic mixer. It is therefore possible to observe a
different frequency band just by replacing the input low-pass
filter with a bandpass filter for the selected frequency range.
     Finally, a comparison has to be made between a FFT-based
spectrum analyzer and a scanning-receiver type spectrum
analyzer (conventional analog RF spectrum analyzer). Of course
a scanning-receiver type spectrum analyzer could be implemented
on a digital computer as well. A FFT-based spectrum analyzer
has however a very important advantage over a scanning-receiver
spectrum analyzer: regardless of the hardware used the FFT
spectrum analyzer uses the available spectral information in
a much more efficient way resulting in a much quicker
operation.
     As an example, consider that a 5kHz wide frequency band
has to be analyzed to a resolution of 10Hz. A scanning receiver
with a 10Hz bandwidth has to dwell on each 10Hz frequency step
for about 0.1 seconds, resulting in a total sweep time of
about 50 seconds! On the other hand, a FFT-based spectrum
analyzer needs to sample a 5kHz wide signal with a sampling
frequency of 10kHz. A 1024-point FFT has to be used to obtain
a 512-point display, so the total "scanning" time is 0.1024
seconds!
     In the above real-world example the FFT spectrum analyzer
is about 500 times faster! The reason for this is that a
conventional scanning-receiver spectrum analyzer only uses
the information contained in its receiver bandwidth, all the
other information contained in the signal is simply rejected!
On the other hand, the FFT-based spectrum analyzer uses all of
the information contained in the signal since the FFT algorithm
corresponds to a bank of 512 parallel bandpass filters in the
above example. Such a bank of filters would be prohibitively
expensive and difficult to make using conventional analog
technology.
     A FFT-based spectrum analyzer can therefore be used in
applications where a conventional scanning-receiver type
spectrum analyzer is not practical due to the too long
scanning time or completely useless since the signal is not
available for the scanning time period required. Even in the
case when the scanning-receiver type can be used, the FFT-type
can provide a much more accurate result in the same time,
averaging among a large number of measurements.



     Unfortunately the bandwidth and dynamic range of digital
FFT spectrum analyzers are severely limited by the available
hardware, mainly A/D converters. It is therefore necessary to
understand the advantages and disadvantages both techniques to
select the most suitable one for a particular problem, since
the two techniques are complementing each other rather than
competing at the present state of technology.

5. Amateur applications of a FFT spectrum analyzer
--------------------------------------------------
     Although FFT spectrum analysis is presently limited to
the audio-frequency range or slightly above, it has many
interesting and very useful amateur-radio applications.
In the following section a few typical amateur-radio
applications will be presented including the spectrum plots and
intensity spectrograms obtained. All of the latter were
obtained by connecting the output of an amateur SSB or FM
receiver to the MC68010 based DSP computer described in a
series of articles in UKW-Berichte/VHF-Communications. All
of the plots were obtained with a FFT spectrum analyzer program
including a 1024-point FFT algorithm and all the other features
described in the previous section. Unfortunately the intensity
spectrograms could only be printed in black-and-white with no
gray levels, so they can not represent all of the information
that was visible on the computer screen.
     A FFT spectrum analyzer is a useful tool when building a
SSB receiver or transceiver. One of the most difficult tasks
when building a SSB receiver is to measure the passband of
the crystal filters used, regardless whether are they home-brew
or commercially available items. To obtain a reliable result,
a very stable sweep generator is required in addition to a
storage oscilloscope due to the slow sweeping speed required.
Alternatively, a FFT spectrum analyzer can be connected to
the receiver audio output and a wide-band noise source to the
receiver input (if the receiver own noise is not sufficient).
Thanks to the speed of the FFT spectrum analysis the result
can be obtained quicker than with the sweep generator,
allowing real-time tuning of the trimmers in and around the
crystal filters. Two typical results, plotted on a logarithmic
amplitude scale, are shown on Fig. 5.1.: a 2kHz SSB filter
above and a 500Hz CW filter below. Using FFT spectrum analysis
the trade-off between accuracy and speed is selected by choosing
the averaging factor. However, even with no averaging, the FFT
analysis will only provide a noisy plot while a too fast
sweep generator will provide a completely distorted and thus
useless result.
     A FFT spectrum analyzer is able to reliably detect very
weak signals hidden in noise, far beyond what a human ear can
do, since it is not limited to certain frequency bands,
resolution bandwidths or averaging intervals. The plots on
Fig. 5.2. were obtained by tuning a 2m amateur SSB receiver to
a weak CW beacon and then decreasing the signal level with
an input attenuator to obtain a signal-to-noise ratio of about
-15dB in a 2.5kHz bandwidth or -5dB in a 250Hz bandwidth.



Although the signal-to-noise ratio is around +10dB in the
spectrum analyzer resolution bandwidth, some averaging is
required to reliably detect the signal. On the frequency/
amplitude plot (above on Fig. 5.2.) the averaging was performed
by the computer and then the result was plotted. On the
intensity spectrogram (below on Fig. 5.2.) no averaging was
performed by the computer. Averaging is however performed by
our eyes when observing the spectrogram!
     Even weaker signals could be detected either by increasing
the frequency resolution or by increasing the averaging factor
or both. The practical limit is mainly imposed by the time
required for the signal to be available for a reliable
detection. In a practical communications system there are
other constraints too: receiver and transmitter frequency
instability or phase noise and propagation effects. The FFT
spectrum analyzer can solve the problem of frequency
uncertainty, since it allows to observe a frequency band of
a few kHz instantaneously with a resolution of 5 to 10Hz. The
phase noise of transmitters and receivers should be minimized
anyway. Unfortunately, some propagation effect also show up
as phase or amplitude noise, especially in EME (moon-bounce)
communications. These effects are proportional to the carrier
frequency so major advantages of using FFT techniques for EME
communications can only be expected on VHF and UHF frequencies.
On these frequency bands FFT signal processing may decrease the
RF link performance requirements by 10 to 20dB, since higher
figures would result in useless data rates. In any case, a
communications protocol has to be agreed upon before these
techniques can be used: hand-keyed CW is certainly not a
good choice for computer processing.
     Fig. 5.3. shows how a Morse-keyed CW transmission looks
on an intensity spectrogram. The keying was too quick for the
dots and dashes to appear on the spectrogram, the interruptions
correspond to the longer spaces between letters. In order to
be able to see the single dots, much more frequent FFTs should
be made and each FFT should be taken on less data samples since
time and frequency resolution are of course reciprocal.
     Receiver AGC effects are easily visible, increasing the
noise level during longer pauses. The spectrogram above was
obtained from the AO-13 Mode-B 2m beacon and shows a slight
"FM-ing": the trace has "tails" to the right at the beginning
of each transmission. The spectrogram below was obtained from
the LUSAT-1 70cm CW beacon. A quickly changing Doppler
frequency shift is easily visible, as well as an interference
to the left corresponding to the third harmonic of the signal,
generated somewhere in the audio stages of the SSB receiver.
     A FFT spectrum analyzer can be used to identify, tune-in
and measure the parameters of a FSK RTTY transmission as shown
on Fig. 5.4. The two RTTY tones are easily visible both on the
amplitude/frequency display and on the intensity spectrogram.
Both of them were obtained from the AO-13 50 baud RTTY Mode-B
beacon. In the middle of the spectrogram a period with no
keying is visible: only one of the tones, un-modulated, is
transmitted during this period. During active keying the tone
traces become wider due to the 50 bps modulation sidebands.
     A FFT spectrum analyzer can therefore be considered as an



up-to-date replacement for the old-fashioned RTTY oscilloscope
tuning indicator. Both tone frequencies and the keying shift
can be quickly and accurately determined. In addition, a FFT
display provides information about signal distortion (selective
fading) or interferences. Especially in the latter case a FFT
display will provide some useful information about the
countermeasures to be taken (notch filter tuning for example)
and about their effectiveness.
     The parameters of a FSK or AFSK signal are more difficult
to identify if the data rate is comparable to the frequency
shift, as shown on Fig. 5.5. 1200 bps packet-radio uses 1200 Hz
and 2200 Hz tones, the shift is therefore 1000 Hz, comparable
to the data rate of 1200 bps. The spectrum of such a
transmission is an almost contiguous frequency band with just
a few peaks, that do not necessarily correspond to the tone
frequencies as shown on Fig. 5.5. above. The intensity
spectrogram below shows the intermittent nature of packet-
-radio signals. Due to the short duration of the packets,
their spectrum could never be obtained by a scanning-receiver
type spectrum analyzer.
     A FFT spectrum analyzer can be used as a valuable tuning
aid for PSK packet-radio communications. Phase-shift keying is
used for satellite packet-radio communications since it allows
a longer communications range with the same RF equipment
performance. On the other hand, PSK and other coherent
techniques require accurate tuning and good frequency
stability.
     The spectrum of a 1200 bps packet-radio transmission from
the PACSAT-1 satellite is shown on Fig. 5.6. The plot above
shows the spectrum during the transmission of flags between the
packets. On this plot it is easy to identify the carrier,
surrounded by sidebands spaced at 150 Hz. During the
transmission of packets containing random data the spectrum
looks almost like perfect noise (Fig. 5.6. below) and it is
much more difficult to identify the correct tuning. In fact a
straightforward PSK transmission contains very little
redundancy and there are no residual carriers either.
     Some more redundancy can be noticed in the AO-13 400 bps
BPSK Mode-B beacon transmission due to Manchester coding.
Fig. 5.7. above shows the spectrum during the transmission of
the filling bytes (50H) in between the data frames: this
repetitive pattern generates the many discrete spectral lines.
On the intensity spectrogram on Fig. 5.7. below it is easy to
identify the single data frames and the filling byte periods
in-between them. Even data frames sometimes contain repetitive
patterns causing discrete spectral lines inside the data
frames. Regardless of the modulation data the signal spectrum
has two main lobes caused by the Manchester coding. The latter
are positioned symmetrically around the carrier, suppressed by
this modulation technique.
     A FFT audio spectrum analyzer is useful to check WEFAX
and APT satellite signals and related receiving equipment.
Using a FFT spectrum analyzer important details of an
unknown satellite transmission, like that of a new satellite,
can easily be determined. Further, the receiving equipment
can be checked for a correct deemphasis (to avoid loosing



geometrical resolution) and sources of eventual interferences.
     All this is easier to describe on a well known example,
like the Meteosat WEFAX transmission shown on Fig. 5.8. On the
frequency/amplitude plot on Fig. 5.8. above the strongest
spectral component is the 2400 Hz sub-carrier. The sub-carrier
should be surrounded by symmetrical sidebands if the deemphasis
is properly adjusted. The sidebands depend of course on the
picture content. The most notable detail are the two
symmetrical peaks corresponding to the line-sync 840 Hz bursts.
These have a rather rounded peak, since their duration is
very short: their spectral width is inversely proportional
to their duration. The intensity spectrogram shown on Fig. 5.8.
below shows that the sync bursts appear in about every second
FFT conversion. Also, the spectrum close to the 2400 Hz
sub-carrier also changes with the picture line period. The
annotation transmitted at the end of the picture is well
visible, followed by the discrete spectral lines of the 450 Hz
stop tone lasting 5 seconds. What follows is just part of the
spectrum of a DCP retransmission between two WEFAX pictures.
The DCP flags create two strong discrete spectral line traces
on the spectrogram, interleaved with three DCP data frames
visible on Fig. 5.8. below.
     The spectrum of a NOAA APT transmission, shown on
Fig. 5.9. is a little more complex. There is still a strong
2400 Hz sub-carrier component, but there are two different sync
bursts of 832 Hz and 1040 Hz respectively. The side-lobes
generated by both sync bursts are well visible on Fig. 5.9.
above. On the intensity spectrogram on Fig. 5.9. below it
is easy to notice that these sync pulses appear interleaved in
the APT signal. The remaining spectrum also changes with the
same period.
     Although a FFT spectrum analyzer is actually an audio-
-frequency test equipment, it has many interesting applications
in the amateur-radio field. The above examples were chosen just
to show a few possible applications of a FFT spectrum analyzer
and the many different ways a FFT spectrum analyzer can be
used. Probably most of the applications are yet to be
discovered, since FFT spectrum analysis only became available
to amateurs with recently developed low cost and high
performance microprocessors and A/D converters.

6. The FFT spectrum-analyzer program for the DSP computer
---------------------------------------------------------
     The FFT algorithm can be implemented on almost any
digital computer, ranging from 8-bit video-game toys to the
largest and fastest mainframes. The FFT algorithm requires
very little memory, since the results of a "butterfly"
operation are stored in the same two memory locations where
the arguments were taken from. Therefore the memory
requirements are very low, including just a buffer of the
size of the input data block and another buffer of a similar
size to hold the phase coefficients.
     Of course the execution time will depend on the computer
used. Computing a 1024-point complex FFT on a 8-bit



microcomputer programmed in a high-level language like BASIC
will require several minutes. Computing the same 1024-point
FFT on an IBM AT compatible equipped with the mathematical
co-processor and executing a compiled program will still require
several seconds. A well-written machine code program for
a general-purpose 16-bit microprocessor can compute a
1024-point FFT in a few hundred milliseconds using 16-bit
integer arithmetics. Finally, dedicated DSP microprocessors are
able to compute a 1024-point FFT in tens of milliseconds with
the top-of-line devices requiring a few milliseconds.
     A FFT spectrum-analyzer program was written for the DSP
computer published in UKW-Berichte/VHF-Communications. This
computer includes a 8-bit logarithmic A/D converter input
port and a 512-pixel by 256-line, 256-gray-level video display.
The MC68010 microprocessor used in this computer is able to
compute a 1024-point complex FFT in about 150 milliseconds.
Considering that some CPU time is required for other functions
too, like interrupt handling or display update, the maximum
sampling frequency for successive but non-overlapping FFTs
without skipping any input data is about 8 kHz. This figure
matches very well the performance of the switched-capacitor
filter in front of the A/D converter as well as the audio
bandwidth available from a communications or amateur receiver.
     The FFT spectrum-analyzer program for the DSP computer
includes all of the features from Fig. 4.1.: A/D conversion,
data buffering, FFT algorithm with magnitude computation and
display. Weighting, averaging, LIN/LOG conversion, display
format and hard-copy are implemented as user-selectable
options. The complete set of commands is shown on Fig. 6.1.
The same HELP menu is obtained each time a wrong command is
issued. Otherwise, the program uses 248 image lines for
the function plot or spectrogram and the 8 bottom lines to
annotate the main program parameters.
     The program parameters are selected by typing their
initial letter as shown on the HELP menu. The selected
parameter will then appear in the annotation text line.
The selected parameter value can be then adjusted: increased
or decreased, by using respectively the + and - keys. The * key
will set ALL of the parameters to their default values.
     The program parameters include:
AVERAGING: averaging factor, ranging from 1 (no averaging) to
4096 and adjustable in powers of 2.
BORDER, DIVISIONS, ERASER, INK, PAPER: gray-level count,
adjustable between 0 and 248 in steps of 8.
FUNCTION DISPLAY: selects an amplitude/frequency function-plot
type display as indicated in the annotation text.
GAIN: adjusts the gain between the A/D converter output and
FFT input to increase the dynamic range with low-level signals.
Usually set to 1 to prevent saturation.
HARDCOPY: each time H is depressed, a hard-copy file PLOT.DAT
is created. The format is selected to be understood by most
dot-matrix and laser printers. Since these printers can not
print gray levels, the threshold between black and white is
set to a gray-level count of 127/128!
OVERLAP: switches the overlap (50%) option ON or OFF (toggle
operation). When ON, the overlap option is indicated by an "O"



in the annotation text.
RESOLUTION: selects the sampling frequency and therefore the
full-scale frequency span or resolution between 301 and
6400 Hz by setting the sampling-frequency divider modulo.
SPECTROGRAM DISPLAY: selects an intensity spectrogram type
display, as indicated in the annotation text.
TRIGGER: starts or stops (toggle operation) the operation of
the spectrum analyzer. The status RUN or STOP is indicated in
the annotation text. In the STOP mode, the display is "frozen".
VIDEO: selects the video gain after the FFT algorithm in the
LIN mode. The lowest setting selects a LOG video scale
(default).
WEIGHTING: switches the raised-cosine weighting option ON or
OFF (toggle operation). When ON, the weighting option is
indicated by a "W" in the annotation text.
     The performance of this FFT spectrum analyzer is of
course limited by the analog hardware used: input bandpass
filter and A/D converter. Fig. 6.2. above shows the passband
of the input filter, obtained with the same spectrum analyzer
by simply connecting a wide-band noise source to the input.
The dynamic range of the 8-bit logarithmic A/D converter used
is only about 40dB due to quantization noise. The performance
of the spectrum analyzer is however better: in many practical
cases the display dynamic range reaches 60dB since the
quantization noise usually appears as wide-band noise.
     The input switched-capacitor filter and A/D converter own
noise is well visible on Fig. 6.2. below. Using a logarithmic
amplitude display the quantization steps become very large at
low signal levels. In the LOG vertical mode, the full scale
amplitude range is 15 bits or 90dB. The difference between
counts 1 and 2 should therefore correspond to the difference
between counts 16384 and 32768 on a LOG scale, however in the
former case there are no additional counts possible between
1 and 2 resulting in relatively large "steps" on the display.
     With a 10 MHz CPU clock, the FFT spectrum-analyzer program
is able to operate with a sampling frequency of about 8 kHz
(resolution 4 kHz) on contiguous but non-overlapping data.
The input data buffer routine is designed to skip data blocks
automatically if the CPU is unable to further process them in
real time, like in the case of a higher sampling frequency or
overlapping FFTs. Sometimes it is very useful to be able to
operate in these conditions even if some data is lost. On
the other hand, an analog scanning-receiver type spectrum
analyzer usually discards over 99% of the information contained
in the input signal!
     The FFT program includes a 1024-point complex FFT
algorithm. The algorithm is used to process two independent
sets of 1024 consecutive input samples. The results of the FFT
are then separated using the Fourier transform symmetry laws
into two independent 512-point signal spectra. The phase
information is rejected and the magnitudes are computed using
a quick approximation for the square root. The LIN/LOG
conversion is obtained with a lookup-table algorithm to avoid
the even slower log function.
     The display routine includes automatic limiting if the
magnitude exceeds the top on a function plot or the maximum



brightness on an intensity spectrogram. Hard-copies of the
computer screen in the various modes are used throughout this
article.
     The FFT spectrum-analyzer program is written partially
in the MC68010 machine code and partially in the DSP computer
high-level language. The commented source program is about
15 kilobytes long while the compiled program requires about
47 kilobytes. This is actually less than most other DSP
programs thanks to the compactness and low memory requirements
of the FFT algorithm. Of course the FFT program can run in
multi-task with other programs that do not use the same
peripherals, like the TRACK program.
     Future upgrades to the FFT spectrum-analyzer program
should include the capability to adjust the size of the FFT
(number of points) according to the requirements of the
measurement: some problems (quickly changing signals) require
less than 1024 points while others require a higher resolution
and thus more than 1024 points. The 1024-point FFT is however
a good compromise for most measurements.
     Finally, it is hoped that this article will encourage
amateurs to use the FFT algorithm and FFT spectrum analysis,
since the latter can easily be implemented on the described
DSP computer and on many other computers as well. Presently
FFT spectrum analysis is only available on top-of-line
professional instrumentation and the reason for this is
probably the poor understanding of this new technique by the
majority of spectrum-analyzer users.
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