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Abstract

Frequency counters can be designed with good, bad, or 
ugly performance. For some reason bad and ugly are 
most popular. We describe a way to build a simple 
counter that has better than 100 ps RMS noise while 
maintaining low cost, and only uses easily obtainable 
components.

Introduction

The simplest approach to a frequency counter is the 
gated counter. The signal of interest is fed to a counter 
which in turn is gated by a pulse of known length, such 
as 1 second. The shortcoming of this approach is that the 
quantiztion error is 1/2 LSB regardless of input 
frequency, so with a 1 second gate the quantization error 
is 0.5Hz. To get precision on the order of 1ppb on a 
10MHz input, the gate time would have to be 100 
seconds. On a 30Hz signal the gate time would have to 
be one year. 

A slightly better approach is the reciprocal counter. 
Instead of counting the signal gated by the reference, the 
reference is counted and gated by the signal, divided 
down so the gate time is, say, one second. Such a counter 
with a 10MHz reference will have 10 million counts per 
second regardless of input, and will need 100 seconds 
gate time to achieve 1ppb precision regardless of input 
frequency. The simple way to get better performance is 
to increase the reference frequency, only 10MHz is the 
industry standard for frequency standards, the PLLs 
required for upconversion add cost, and beyond 200MHz 
there are no cheap prototyping-friendly CPLDs.

The reciprocal counter can be greatly improved at little 
cost by adding an interpolator. The interpolator converts 
the quantization error of the counter circuit into an 
analog value, converts the analog value to digital and 
treats it as a fractional count.

The counter described herein uses a low cost 
interpolator, consisting of a CPLD, a few diodes, and the 
A/D converter in a microcontroller.

                    fig.1

The reciprocal interpolating counter

The signal clock is applied to the clock input of 
synchronizer flipflop a, and a control term to the D input 
of flipflop a. When the host processor desires to 
timestamp an edge, it sets the control term low. One or 
two signal clocks later, depending on multiplexer b, the 
holding register for the signal counter will be disabled, 
capturing the value of the signal counter.
The signal from flipflop c then crosses clock domains to 
the second part of the counter. Synchronizer flipflops d 
and f similarly disable the holding register on the 
reference counter side. The two holding registers now 
hold the signal edge number and the reference edge 
number. A reciprocal frequency counter triggers this 

process twice, subtracts*, and divides the two differences 
to yield the ratio between the signal and reference.

The quantization error occurs at the input of flipflop d 
(or f depending on multiplexer e) where the signal 
crosses clock domains. Thus, the interpolator will see a 
time difference between its two inputs of 0-1 clocks or 1-
2 clocks depending on multiplexer e, representing the 
instantaneous phase of the reference clock relative to the 
signal edge captured. This difference must be converted 
to a digital value with high precision and linearity, and 
directly limits the attainable precision for the whole 
system. A system without interpolator has an inherent 1 
clock limit.

*usually by clearing both counters on the first trigger
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Digital section

The goal is to keep cost low. Since the reference clock 
chosen is 10 or 20MHz this means we can clock the host 
microprocessor from the reference. The gain is twofold: 
We eliminate a separate crystal for the cpu, and even the 
cheapest members of ATMega series have a 16 bit 
timer/counter with input capture capability, providing the 
reference counter directly on the cpu. It needs to be 
lenghtened to 32 bits or more, this can be done in 
software using an overflow interrupt.

The signal counter needs to run at reasonably high 
frequencies though this can be helped by a prescaler. The 
effective length of the signal counter needs to be greater 
than the maximum capture interval, a million counts or 
more at high frequencies and one second interval. Like 
the reference counter it can be lengthened in software by 
observing the rollover of the counter, in practice the 
falling edge of the topmost bit. Thus, 16 bits in hardware 
is plenty for the signal counter and the holding register.

Synchronizers c,f need low phase noise since noise here 
adds to the output. A MSI implementation needs at least 
7 devices, 4 for the counter and holding register, 2 for 
flipflops, and 1 for mux. Mounting this many devices, 
their associated decoupling capacitors, and PCB real 
estate is costly. The alternative is a low cost CPLD. We 
need 4 macrocells for the synchronizer chain and about 
10 for bus interface, leaving us either 18 or 52 
macrocells for the counter and holding register in the two 
smallest Xilinx Coolrunner parts. A 9 bit signal edge 
counter may suffice if a sufficiently large prescaler is 
used. With an arbitrarily chosen 20kHz limit on the 
lenghtening interrupt the upper limit becomes 
2^9*20kHz=10.24MHz. The cost is ~e1 and ~e3 for the 
two parts.

Interpolator

Designing an interpolator without exotic components 
limits selection severely. The Coolrunner CPLD has 
relatively slow but constant, risetimes, and we need a 
switch that has picosecond-range switching uncertainty. 
The 1N4148 diode is such a part. BAS16 is similar. They 
are 200mA 100V types marketed as high speed 
switching diodes, and likely the most common diode 
around. While the datasheet states 4ns switching speed, 
the switching uncertainty is much less. By using three of 
these diodes in combination with the CPLD, we can 
create a simple current-gated integrator circuit that has 
less than 50ps noise:

            fig. 2

When idle, the output of /c is low, and diodes h and i are 
conducting. The capacitor sees a low impedance, 
consisting of the /c output impedance and the impedance 
of diode h in series, and is preset to the starting value. 
When the gate starts closing /c goes high. Diode h turns 
off, and the capacitor starts charging. When f goes low 
diode g steals the current from the current source,  diode 
i turns off, and the charging stops. Since diodes h and i 
operate into a capacitive load, and at the same current, 
the reverse recovery charges mostly cancel: When h 
turns off, additional charge is injected into the capacitor, 
then i turns off and steals a similar charge. Likewise the 
voltage dependant capacitance of diodes h and i are 
opposite with respect to integrator voltage, mostly 
canceling nonlinearity from varactor effects.

The charge left on the capacitor must be quantitized 
before it leaks away through parasitics and diode 
leakage. With a 1nF capacitor and a leakage of 100 
nanoamperes the resulting slew rate is 100V/s, so for a 
1mV error the amplifier j and the A/D converter needs to 
settle and do sample/hold in less than 10 microseconds. 
With a 200kHz A/D clock the AVR series can do this, 
though it should be noted that as the leakage current in 
the diodes is reltively constant, sampling at twice that 
does not degrade linearity significantly.

With a 8mA current source and 1nF capacitor, the 
change in capacitor voltage is 8mV/ns, yielding 320 ps 
resolution if applied to the A/D converter directly. The 
test circuit used a TLC072 as straight buffer, and the 
output when the counter was fed with its own reference 
clock was flicker free. Thus the peak to peak noise of the 
synchronizer chain, Coolrunner CPLD input, output, and 
diodes, does not exceed ~50 ps RMS.

When applying signals other than the reference clock, 
the figure deteoriates to ~100ps since the beat between 
noise generated by the reference, and noise generated by 
the signal applied, causes shifts in input thresholds, and 
thus in arrival timing. 

Calibrating the interpolator

The system needs to be self calibrating since a separate 
calibration process would add cost. By running the 
counter against its own reference, and using the bypass 
and non-bypass states of multiplexer e, the cpu can 
acquire the capacitor voltages resulting from two arrival 
times exactly one reference clock cycle apart. When the 
A/D converter value is divided by this difference, and 
subtracted from the value in the reference holding 
register (in the test circuit the TCNT1 counter in the 
AVR cpu), the result is correct scaling.

The temperature coefficient of diode h and the nmos 
transistor in the CPLD output /c also cause drift, in the 
test circuit this proved to be on the order of 1ps/s. This 
can be compensated out by occasionally doing a second 
A/D conversion after the circuit has been reset to the 
starting state, thereby negating the drift without the 
penalty of  halving the acquisition rate for signals faster 
than half the A/D conversion rate. 
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Linear regression

Since a frequency counter is supposed to measure the 
ratio between two frequencies, and not the time it takes 
for some number of cycles to pass, performance of the 
counter can be improved by sampling many times over 
the duration of the acquisition period, and not just at the 
beginning and end. Since the AVR A/D can do around 
15k conversions per second, and the effective noise 
drops with roughly the square root of of the number of 
acquistions, with a one second gate time the equivalent 
flicker free start-stop uncertainty drops from ~320ps to 
~2.6ps. Thus, using linear regression, the test circuit 
provided 12 flicker free digits at 1 second gate time. 
If linear regression is applied to a counter without 
interpolator, the beat between the applied signal and the 
reference produces input dependant flicker, and input 
dependant reduced precision. This is most pronounced 
when the ratio between the signal and the reference is 
(almost) an integer.

Where the reciprocal counter needs 100 seconds to do a 
1ppb measurement, the similar reciprocal interpolating 
regressing counter provides 1000 times better precision 
in 1/100th the time. 

Implementations for slow input signals

If the input signal bandwidth is low, low defined as less 
than the conversion rate of the interpolator and A/D 
converter, the signal counter and signal holding register 
can be eliminated, leaving just the three synchronizer 
flipflops c,d,f and multiplexer e. Keeping multiplexer e 
allows self calibration, thus for applications like PPS 
inputs in GPS disciplined oscillators the added cost of 
providing sub-nanosecond quantization is set by the four 
flipflops, the capacitor, the current source, and the 
buffer. The cost saving going from a sub-nanosecond 
input to a poor 100ns one is ~e1.5. Compared to the cost 
of other components in a frequency counter system, an 
interpolator provides a lot of performance per euro.

Closing notes

Neither the interpolating reciprocal counter nor the 
regressing counter are new. They are, however, regarded 
by most engineers as somewhat of a black art, the 
domain of custom silicon and expensive laboratory 
instruments. In reality interpolating counters and capture 
systems can be built with cheap components already in 
stock, at low cost, while still yielding good performance.
Why settle for less?
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Left: Timestamping a 18.414MHz TCXO against a 10MHz DCF-DO: ~500 ps p-p, mostly due to A/D quantization. 
Right: Comparing a 10MHz TCXO and a 18.414MHz TCXO with 1 second gate time.
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VHDL source for test implementation

--------------------------------------------------------------------------------
--
-- Company: 
-- Engineer:       Kasper K. Pedersen
-- 
-- Create Date:    23:32:39 01/04/2008 
-- Design Name:    Timestamper
-- Module Name:    top - Behavioral 
-- Project Name:   Targeting LIDAR
-- Target Devices: 64MC Coolrunner, 64MC CoolrunnerII
-- Tool versions:  9.1i.J.30
-- Description:    Event timestamper with two non-simultaneous channels
--
-- Revision: 
-- Revision 0.01 - File Created
-- Additional Comments: 
--
--------------------------------------------------------------------------------
--
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity top is
    Port ( refclk    : in  STD_LOGIC;  --
           cputx     : in  STD_LOGIC;  -- not related to T/F
           cpurx     : out  STD_LOGIC; -- not related to T/F 
           cputen    : in  STD_LOGIC;  -- not related to T/F
           transrx   : in  STD_LOGIC;  -- not related to T/F
           transtx   : out  STD_LOGIC; -- not related to T/F
           transen   : out  STD_LOGIC; -- not related to T/F
           miso      : out  STD_LOGIC; -- SPI shift out of hold reg 
           mosi      : in  STD_LOGIC;  -- SPI shift-in of configword
           sck       : in  STD_LOGIC;  -- SPI shift clock
           ss        : in  STD_LOGIC;  -- 0 resets, 1 to captures
           icp1      : out STD_LOGIC;  -- capture strobe to ref ctr/status
           pd4       : in  STD_LOGIC;  -- nc
           pd5       : in  STD_LOGIC;  -- nc
           int1      : out STD_LOGIC;  -- signal ctr elongation
           pd7       : in  STD_LOGIC;  -- nc
           tosc2     : in  STD_LOGIC;  -- nc
           modeshift : in  STD_LOGIC;  -- 1 to load config word
           led1      : out  STD_LOGIC; -- capture indicator
           led2      : out  STD_LOGIC; -- not related to T/F

  
           rampstopN : out STD_LOGIC;  -- interpolator outputs
           rampstartP: out STD_LOGIC;

  
           sigclk    : in STD_LOGIC;   -- input to signal counter, connected 
           sigout    : out STD_LOGIC;  -- to this pin, the input mux output
           sigin1    : in STD_LOGIC;   -- input 1
           sigin2    : in STD_LOGIC);  -- input 2
end top;

architecture Behavioral of top is
  signal mux: STD_LOGIC_VECTOR(3 downto 0);
  signal eventcounter,eventhold: STD_LOGIC_VECTOR(15 downto 0);
  signal readindex:STD_LOGIC_VECTOR(3 downto 0);
  signal syn1siggate,siggate:STD_LOGIC;
  signal syn1cpugate,cpugate:STD_LOGIC;
begin



  --mux: input source 1, 2, REF, or off
  multiplexer: process(sigin1, sigin2, mux)
  begin
    if mux(1 downto 0)="00" then
      sigout<=sigin1;
    elsif mux(1 downto 0)="01" then
      sigout<=sigin2;  
    elsif mux(1 downto 0)="10" then
      sigout<=refclk;  
    else
      sigout<='0';   
    end if;
  end process;

  --ct: count edge number on source
  signalcounter: process(sigclk)
  begin
    if RISING_EDGE(sigclk) then
      eventcounter <= eventcounter +1;
      if siggate='1' then
        eventhold<=eventcounter;
      end if;
    end if;
  end process;

  --mux for serial readout of source edge hold register to cpu
  readselect: process(readindex)
  begin
    case readindex is
      when "0000" =>  miso <= eventhold(0);
      when "0001" =>  miso <= eventhold(1);
      when "0010" =>  miso <= eventhold(2);
      when "0011" =>  miso <= eventhold(3);
      when "0100" =>  miso <= eventhold(4);
      when "0101" =>  miso <= eventhold(5);
      when "0110" =>  miso <= eventhold(6);
      when "0111" =>  miso <= eventhold(7);
      when "1000" =>  miso <= eventhold(8);
      when "1001" =>  miso <= eventhold(9);
      when "1010" =>  miso <= eventhold(10);
      when "1011" =>  miso <= eventhold(11);
      when "1100" =>  miso <= eventhold(12);
      when "1101" =>  miso <= eventhold(13);
      when "1110" =>  miso <= eventhold(14);
      when "1111" =>  miso <= eventhold(15);
      when others =>  miso <='0';
    end case;
  end process;

  --SPI interface towards the cpu, counter controlling the mux above,
  --and shift-in of the 4 bit configuration word controlling
  --the source multiplexer and the two muxes in the sync chain
  readclock: process(sck,readindex)
  begin
    if RISING_EDGE(sck) then
      readindex <= readindex + 1;
      if modeshift='1' then
        mux <= mux(2 downto 0) & mosi;
      end if;
    end if;
    if ss='0' then --async clear on 0
      readindex<="1111";      
    end if;
  end process;



  gatesig: process(sigclk, ss)
  begin
    if RISING_EDGE(sigclk) then
      syn1siggate <= not ss;        -- ss 9 is prepare,1 is do-capture
      siggate <= syn1siggate;       -- 2FF-synchronizer mode
      --gate is signal-synchronous, goes low now, locking the counter.
      if mux(3)='1' then
        siggate <= not ss;          -- 1FF-synchronizer mode
      end if;
    end if;
    --async reset: gate ON when ss goes low.
    if ss='0' then
      syn1siggate <= '1';
      siggate <= '1';  
    end if;
  end process;

  gatecpu: process(refclk)
  begin
    if RISING_EDGE(refclk) then
      syn1cpugate <= siggate;     
      cpugate <= syn1cpugate;     --cpugate - siggate = 1..2 clock
      if mux(2)='1' then
        cpugate <= siggate;       --0..1 clock (for interpolator calibration)
      end if;
    end if;
    --no async when ss is 0, no need, after 2 clk it has propagated.
  end process;

  rampstartP <= not siggate;      --interpolator outputs
  rampstopN <= cpugate;

  icp1 <= cpugate;                --capture indicator
  int1 <= eventcounter(15);       --signal ctr elongation.

  transtx <= cputx;
  cpurx <= transrx or not cputen; --cputen low=don't rcv.
  transen <= not cputen;          --inverted! low is transmit
  led2 <= not ss;                 --show capture status on LED
  led1 <= cputen;                 --activity indicator
end Behavioral;

52 MC, 76 PT, 45 FF, 87MHz sigclock max, 95MHz refclock max in the cheapest part.


