
FT4/FT8 and RX Diversity
for WSJTX 2.1.2

Iztok, S52D

January 24, 2020

Abstract

An implementation of FT8 and FT4 diversity for WSJTX program is described.
Time diversity is summing up two consecutive even or odd samples, space di-
versity is summing up samples from two coherent receivers and two copies of
WSJTX, while frame diversity is summing up decoded messages from two WSJTX
instances.

Key point for described implementation is how to add up two incoherent au-
dio samples. Solution is to shift one audio sample a few times in time domain, so
that every tone gets a possibility to be summed up in phase.

SW installation and operation are described, as well as overview how the code
works.

Diversity, as implemented, helps decode more traffic and provides significant
improvement in Weak Signal communication on HAM shortwave.

1 Introduction

Diversity reception is present in all modern radio communications. Even cheapest
cellular phones have a pair of antennas and receivers. CW and SSB diversity reception
is becoming popular (W8JI call it stereo diversity). Simplest form of diversity has two
receivers and a logic to select one of them. Properly designed digital protocols like
FT4 and FT8 are suitable for better diversity. More advanced techniques are common,
where combining is done on bit level and complex processing is used.
FT modes of WSJTX are extremely popular on HAM shortwave bands and we need
better reception techniques to deal with interference and other obstacles contributing
to weak signal reception. Better FT4 and FT8 decoding is achieved using diversity, by
combining two or more RX signal sources. 2 to 5 dB S/N can be gained, enough to
make some QSOs possible.
Diversity patch was first implemented in WSJTX 1.9.1 and later in WSJTX 2.0.0 for
FT8. FT4 was added in version 2.1.2, as well as optional faster, a bit less efficient,
summing of noncoherent samples.
Results are excellent: S52D made several QSOs that would not be possible with stan-
dard FT4/FT8 decoder. Benefits are seen on empty band with only few decodes, as
well as on crowded 20 m band. Usually 10 % more messages are decoded using both
time and space diversity.



2 RX Diversity

Details on different diversity approaches are given, followed by description of how
synchronization of noncoherent audio samples was realized.
WSJTX uses multiuser detection: when one frame is properly decoded, it is subtracted
from the audio recording, thus new detection is possible in next passes. By combining
two residual audio samples (either from different time periods or different receivers)
more frames can be decoded.
Though K1JT wrote program MAP65 where two receivers are supporting EME modes,
unfortunately it is not usable on HF for FT4 or FT8.

Data flow in WSJTX with diversity. Temporary file is exchanged with decoded frames
and residual audio sample.

2.1 Time diversity

Since no additional hardware is needed, any WSJTX user can benefit. Decoder takes
two consecutive odd/even samples with residue signals and combines them with
proper tone phase. For repeated messages it combines amplitude of the signal, while
noise and interference are only power summed.
To put it simply, it can be said that some bits are coming from the current sample, and
some from the previous sample.
Sometimes it decodes messages that were transmitted in the previous sample, occa-
sionally both messages are decoded with current time. For example, we can see both
RRR and 73 messages together. This happens when summing up with common bits
like CALLs.
While operating FT4 or FT8, ”t“ marked messages are not to be trusted completely, as
they might be ghosts from previous sample.

2



Samples are being summed up, while changing bands or just receiver QRG. Thus,
old band data can be decoded as being received on the new band and reported to
PSKreporter.

2.2 Frame diversity

As implemented, it simply adds messages decoded by secondary WSJTX to the pri-
mary one.
Since full decode is done by one decoder, strict RX synchronization is not required
and two independent radios can be used.
Both RX have to be tuned to the same frequency, otherwise WSJTX might get confused
and transmit on the wrong frequency, as only tone frequency is reported by the sec-
ondary copy. Also, when chasing DX, main WSJTX can be tuned to the whole audio
band, while secondary is using 200 Hz filers to pick out only the wanted station.
Another possibility is on 160 m: as second WSJTX is listening on JA subband 1908 kHz,
there is no need to bother with SPLIT operation, and at the same time it is easy to find
clear TX QRG on 1840 kHz.

2.3 Space diversity

For space diversity two copies of WSJTX shall be run, each monitoring same QRG
on different receivers attached to different antennas. Both radio receivers must be
coherent: it is mandatory to use exactly same filters and same oscillators. Several SDR
units (Afedri, Red Pitaya) supports coherent reception, as well as some mainstream
RIGs like K3 and IC-7610.
Secondary WSJTX instance writes file to a specified directory, while primary reads it
and adds it to decoding. Frame diversity is also used, adding messages decoded by
secondary WSJTX and not by primary. File can be properly closed on time as enough
delay is provided by time diversity on primary WSJTX.
Real space diversity requires two separated antennas in order to fight fading. Polar-
ization diversity with one vertical and one horizontal antenna gives good results as
well.
While testing using IC-7610, benefits were visible by using any pair of antennas. Some
testing is needed to get feeling of how space diversity behaves on different bands at
different instances.
Though normalization of signal strength was tried, there were no benefits with IC–
7610 as both signals are on the same level. Users with two receivers might need to
adjust audio levels to get best results.
Files generated by space and frame diversity are named with time, so they must be re-
moved every day to prevent false decoding. Those files written while primary WSJTX
was transmitted, or those written too late, are not removed by primary instance.

3 Synchronization

Main challenge in diversity implementation was how to synchronize audio samples
for different signals. Two instances of WSJTX do not capture audio at exactly same
time. TX stations also do not transmit exactly at the same time, the main reason being

3



the latency of the operating system.
As Audio sample is sampled at 12000 Hz, delay unit is 1/12000 seconds. WSJTX
FT4/FT8 decoder subtracts decoded frames from audio sample, and diversity is pro-
cessing residual audio.
A sequence of 7 delays was found that works fine for audio spectrum from 270 to 3000
Hz. It is based on a simple fact: if two signals are offset 50 degrees, then summing
them up when one is delayed 410 degrees, or 770 degrees are same as delaying of 50
degrees. Since FT8 symbol length of 1/6.3 seconds is long enough, small mistakes on
symbol transition do not degrade decoding significantly.

Power of two shifted tones: (sin(ωt) + sin(ωt − φ))2 for different phase difference φ.
Summing up power of two uncorrelated noise sources results in 1.4 times increase in
noise power.
Different combinations were tested with tones from 270 to 3000 (2500) Hz with step
of 1 Hz and with phase shift 0 to 359 degrees with 1 degree step. When adding two
signals with up to 60 degrees shift, degradation from perfect match is marginal, while
shift of +/- 90 degrees is still usable.
Tables with best results for 3, 4 and 7 steps are given with percentage of samples where
match is found with shift up to given angle.

sequence bandwidth Hz 30 deg 60 deg 90 deg
0 3 6 270 – 2500 46.4 % 78.1 % 94.1 %
0 3 6 270 – 3000 47.2 % 80.9 % 95.2 %
0 4 8 270 – 2500 48.0 % 81.2 % 95.7 %
0 4 8 270 – 3000 45.4 % 75.5 % 90.4 %
0 7 14 270 – 2500 45.2 % 75.4 % 89.9 %
0 7 14 270 – 3000 45.4 % 77.1 % 91.7 %

Three shifts statistics. 0, 4, 8 is selected.

4



sequence bandwidth Hz 30 deg 60 deg 90 deg
0 3 6 10 270 – 2500 57.8 % 88.5 % 98.0 %
0 3 6 10 270 – 3000 57.9 % 89.8 % 98.4 %
0 3 6 9 270 – 2500 58.1 % 87.3 % 97.4 %
0 3 6 9 270 – 3000 58.5 % 89.5 % 97.9 %
0 4 7 10 270 – 2500 57.8 % 88.5 % 98.0 %
0 4 7 10 270 – 3000 57.9 % 89.8 % 98.4 %
0 4 8 12 270 – 2500 60.1 % 91.1 % 98.8 %
0 4 8 12 270 – 3000 56.7 % 85.1 % 94.5 %
0 4 8 17 270 – 2500 58.8 % 90.6 % 99.7 %
0 4 8 17 270 – 3000 55.3 % 84.4 % 94.9 %

Four shifts statistics. 0, 4, 7, 10 is selected.

sequence bandwidth Hz 16 deg 30 deg 60 deg 90 deg
0 10 17 20 25 30 39 270 – 3000 51.2 % 77.7 % 97.2 % 100.0 %
0 10 17 20 25 31 39 270 – 3000 50.8 % 76.9 % 97.2 % 100.0 %
0 10 20 26 31 39 17 270 – 3000 50.5 % 76.1 % 95.6 % 99.9 %
0 8 15 22 28 31 41 270 – 3000 50.5 % 76.7 % 97.7 % 100.0 %
0 8 15 22 29 31 41 270 – 3000 50.4 % 76.5 % 97.8 % 100.0 %

Seven shifts statistics. 0, 10, 17, 20, 25, 30, 39 is selected.

4 Operation

Just operate as with standard WSJTX.
The only visible change are frames marked with ”t/f/s“ on the right side, similar as
”a“ for apriori decoding. They are not shown in Fox/Hound or contest mode, but
diversity works. Compound CALLs are sometimes decoded differently in separate
steps and both decodes are shown.
Two configuration files are needed to enable data sharing between two WSJTX in-
stances, as well as directory for temporary files. Old files should be deleted once per
day manually.
Start with sequence length 7. If CPU can not process frames on time, experiment with
faster version of diversity patch using 3 or 4 steps for synchronization. Slightly lower
number of messages can be decoded, compared to version with 7 steps.
Use normal decode. If deep decode is selected, decoding might overlap with TX pe-
riod as the processing time is noticeable longer. Apriori decoding works fine and shall
be selected.
Operator must change mode (FT4/FT8) on both WSJTX as mode change is not prop-
agated. VFO–A/VFO–B shall be checked on any QRG change as well.

5



4.1 Installation

Replace three files (decoder.f90, ft8 decode.f90 and ft4 decode.f90) in src/wsjtx/lib di-
rectory and recompile WSJTX. Only jt9 is changed, there are no changes to C++ code.
Most users will try time diversity only and it works with no additional configuration
files.
Those with two radios and antennas can benefit from frame diversity, while only few
of us have possibility to use space diversity. Both demand two copies of WSJTX to
run (use -r name), and each needs separate configuration file. Please note: both copies
have to be run with option r.
To test setup, start first WSJTX without wsdiv.txt. Time diversity should work. Next,
start secondary WSJTX with wsdiv.txt file and check if temporary files are written. If
so, it is time to start primary one.

4.2 Configuration file

If there is no configuration file, only time diversity is used.
Files wsdiv.txt shall be created in a writable directory where files ALL.TXT, wsjtx.log
and others are stored for each WSJTX instance. On Windows, directories are like

6



C:\Users\S52D\AppData\Local\WSJT-X -RX2.
File wsdiv.txt has a simple format with 10 numbers and two strings, each on separate
line. FT4 and FT8 data are separated, manly because FT4 has shorter gap between RX
and TX. For space and time diversity, we need to select length of sync sequence. Valid
numbers are 0 (no diversity), 1 (marginal), 3, 4 and 7.
The first 10 lines contain numbers for FT4/FT8 to enable and specify sequence length
for time diversity, data writing, data reading for frame diversity and data reading for
space diversity. 0 is for disabled, valid values are 1, 3, 4 and 7 for space/time sequence
length. Selection is based on CPU power of computer, find a match producing decent
results. Decoded frames shall be shown on time, not during TX period.
Since primary WSJTX needs time diversity, the file is read after it was written by sec-
ondary WSJTX, thus time diversity and frame diversity are allways working if space
diversity is activated.
Common directory where files are stored must be created when two receivers are
used. Two directory names are specified, one for writing the file and one for reading.
Windows users shall put proper file name, like C:\temp\div\.
Test parameter is not used in this version of the software.
Example for powerful CPU:

meaning primary secondary
time diversity FT4 7 3
time diversity FT8 7 0
data writing FT4 0 1
data writing FT8 0 1
frame diversity FT4 1 0
frame diversity FT8 1 0
space diversity FT4 7 0
space diversity FT8 7 0
test parameter FT4 0 0
test parameter FT8 8 0 0
write directory . /tmp/div/
read directory /tmp/div/ .

Example for less powerful CPU. A bit more work is allowed for FT8.

meaning primary secondary
time diversity FT4 3 0
time diversity FT8 4 0
data writing FT4 0 1
data writing FT8 0 1
frame diversity FT4 1 0
frame diversity FT8 1 0
space diversity FT4 4 0
space diversity FT8 7 0
test parameter FT4 0 0
test parameter FT8 0 0
write directory . /tmp/div/
read directory /tmp/div/ .

7



5 Code implementation

Only three files are changed: ft8 decode.f90 and ft4 decode.f90 where real work is
done and decoder.f90 where ”t/f/s“ annotations are generated.
There are no changes to the program structure or to procedure parameters so porting
to new versions remains simple.
Brief overlook of code for FT4 (FT8 is similar) is given.
Several new variables are introduced, like:

real ddd(NMAX,5) ! save 4 periods + data read from disk
integer*2 dttablet(7), dttables(7) ! up to 7 shifts

When decoder is run for the first time, wsdiv.txt configuration is read and variables
set properly.

if(first) then
open(100,file=trim(data_dir)//’/wsdiv.txt’,status=’old’,err=299)
first=.false.

endif

Data file is opened before normal pass decodes are written.

if (fswriteok) then
open(101,file=trim(divwdir)//datetime//’.dd4’,access=’stream’,status=’REPLACE’,iostat=ioerr)
if (ioerr .gt. 0) divsav=.false. ! directory does not exist.

endif

There are new passes added to the main loop, and subtraction is activated for all three
passes.

if (divsav .or. tdivok .or. sdivok) dosubtract=.true. ! if diversity enabled...
do isp = 1,28 ! used to be 1,nsp .10..17 time diversity, 20 frame div, 21-27 space d

! isp=10 write dd to file, prepare data for time diversity
if (isp .eq. 10) then
write(101) 0,0,0,0,message,iaptype,qual ! mark end of decoded frames
write(101) dd
close(101) ! close fast, so other task can read after time diversity

endif

if (isp .gt. 10 .and. isp .le. (10+tdlen) ) then
dtoffset = dttablet(isp-10)
dd(1:NMAX-dtoffset) = ddd(1:NMAX-dtoffset,ipnow) +ddd(1+dtoffset:NMAX,ipold)

endif

! here comes space diversity: isp 20 reads files and prepare for space diversity
if (isp.eq.20) then
open(102,file=trim(divrdir)//datetime//’.dd4’,access=’stream’,status=’old’,iostat
do

8



read(102,IOSTAT=ioerr,err=199) smax,nsnr,xdt,f1,message,iaptype,qual
if ((smax .eq. 0.0) .and. (nsnr .eq. 0.0)) goto 197 ! end of frames

ldupe= ! find if already decoded
if(.not.ldupe ) then !pass to WSJTX as new decode

iaptype=iaptype+300 ! frame diversity
call this%callback(smax,nsnr,xdt,f1,message,iaptype,qual)

endif
enddo

! read residual audio from another jt9 instance
197 if (sdivok) then

read(102,IOSTAT=ioerr,err=199) ddd(:,5)
endif

endif

! passes 21 to 27 are for space diversity
if (isp .ge. 21 .and. isp .le. (20+sdlen) ) then
dtoffset = dttables(isp-20)
dd(1:NMAX-dtoffset) = ddd(1:NMAX-dtoffset,ipnow) +ddd(1+dtoffset:NMAX,5)

endif !isp 20..27

For normal passes, decodes shall be saved to file:

if (divsav .and. (isp.lt.10)) then ! frame diversity, s52d
write(101) smax,nsnr,xdt,f1,message,iaptype,qual

endif

New decodes after diversity are marked as t/s:

if (isp .lt. 20) then
iaptype=iaptype+100 ! time diversity

else
iaptype=iaptype+200 ! space diversity

endif

6 Future work

Described diversity is simplest possible from programming point of view, but de-
manding for CPU power.
As WSJTX decoder is working with power spectra, we might get as good results by
summing up power in the frequency domain (cx variable in sync8 for FT8). This might
give similar results with noticeable less computation.
More integration into WSJTX would move configuration file into standard WSJTX
configuration menu. By propagating exact RX QRG to decoder we can stop time di-
versity during QRG change. WSJTX is well balanced and works fine on a different
range of computers. Diversity patch is CPU hungry and works only on top range
CPUs.

9



Space diversity can be made simpler, if WSJTX is capturing audio samples at exactly
the same time, Modifying WSJTX to work with two radios at the same time is not
likely due to complexity of work to cover all possible combinations.
Unlike JT65 averaging, this implementation works on audio sample level. Other
modes might benefit as well. If diversity is incorporated into mainstream package,
then some additional parameters can be added to decoder functions, enabling a more
universal, readable and flexible approach.
External SDR programs can be modified to feed multiple standard WSJTX instances
with proper data. This is the way to handle 4 or more receivers configured for space
diversity.

7 Conclusion

WSJTX decoders are on the limit of what is possible with single receiver. the effects
of using diversity on daily activity is positive, the patch deserves to enter mainstream
code in some later release.
HAMs with single receiver can benefit from time diversity, while those with two
might benefit from frame diversity.
Beside several QSOs including rare DX by using diversity, author learned a lot by
studying WSJTX code and enjoyed every step of it.

8 Acknowledgments

WSJTX development team K1JT, W9AN and G4WJS not only put HAM radio into 21.
century, but also opened up their SW, so that work like diversity can be done.
W9MDB compiled Windows version, and beta testing was done by S51TC and K7MDL
and KB8O.
Nandu tried to translate Angleščina to English.

10


