
FT4/FT8 and Diversity
for WSJTX 2.1.2
DRAFT version

Iztok, S52D

January 21, 2020

Abstract
An implementation of FT8 and FT4 diversity for WSJTX program is described.

Time diversity is summing up two consecutive even or odd samples, space di-
versity is summing up samples from two coherent receivers and two copies of
WSJTX, while frame diversity is summing up decoded messages from two WSJTX
instances.

Key point for described implementation is how to add up two incoherent au-
dio samples. Solution is to shift one in time few times, so every tone gets possi-
bility to be summed up in phase.

Diversity, as implemented, helps decode noticeable more traffic and provides
significant improvement in Weak Signal communication on HAM shortwave.

1 Introduction

Diversity reception is common in all modern radio communications. Even cheapest
cellular phones have a pair of antennas and receivers. CW or SSB diversity recep-
tion is becoming popular (W8JI call it stereo diversity). Simplest diversity has two
receivers and logic to select one of them. More advanced techniques are common,
where combining is done on bit level.
FT modes of WSJTX are extremely popular on HAM shortwave bands and we need
better reception techniques to deal with interference and other obstacles contributing
to weak signal reception. Better FT4 and FT8 decoding is achieved using diversity, by
combining two or more RX signal sources. 2 to 5 dB S/N can be gained, enough to
make some QSOs possible.
Diversity patch was implemented in WSJTX 1.9.1 and later in WSJTX 2.0.0. For WSJTX
2.1.2 FT4 was added, as well as optional faster, a bit less efficient, summing of non–
coherent samples.
Results are excellent: S52D made several QSOs that would not be possible with stan-
dard FT4/FT8 decoder. Benefits are seen on empty band with only few decodes, as
well as on crowded 20m band. Usually 10 % more messages are decoded using both
time and space diversity.

2 RX Diversity

Details on different diversity approaches are given, followed by description how syn-
chronization of non–coherent audio samples was realized.



WSJTX uses multiuser detection: when one frame is properly decoded, it is subtracted
from audio recording, thus new detection is possible in next passes. By combining two
residual audio samples (either from different time period or different receiver) more
frames can be decoded.
K1JT wrote program MAP65 where two receivers are supporting EME modes, unfor-
tunately it is not usable on HF for FT4 or FT8.

2.1 Time diversity

No additional hardware is needed, so any WSJTX user can benefit. Decoder takes two
consecutive odd/even samples with residue signals and combines them with proper
tone phase. For repeated messages it combines amplitude of the signal, while noise
and interference is only power combined.
To put it simply, it can be said that some bits are coming from the current sample, and
some from the previous sample.
Sometimes it decodes messages that were transmitted in the previous sample, occa-
sionally both messages are decoded with current time. For example, we can see both
RRR and 73 messages together. This happens when summing up helps with common
bits like CALLs.
While operating FT4 or FT8, ”t“ marked messages are not to be trusted completely, as
they might be ghosts from previous sample.
Samples are being summed up, while changing bands or just receiver QRG. Thus,
old band data can be decoded as being received on the new band and reported to
PSKreporter.

2.2 Frame diversity

As implemented, it simply adds messages decoded by secondary WSJTX to the pri-
mary one.
As full decode is done by one decoder, strict RX synchronization is not required and
two independent radios can be used.
They have to be tuned to the same frequency, otherwise WSJTX might get confused
and transmit on wrong frequency. If they are tuned to the same band with reasonable
small offset, one TX frequency is fine to make QSOs on both RX windows. Also, when
chasing DX, main WSJTX can be tuned to the whole band, while secondary is using
200 Hz filers to pick out only the wanted station.
Another possibility is on 160 m: second WSJTX is listening on JA subband 1908 kHz,
so there is no need to bother with SPLIT operation, and at the same time it is easy to
find clear TX QRG on 1840 kHz.

2.3 Space diversity

For space diversity two copies of WSJTX shall be run, each monitoring same QRG
on different receivers attached to different antennas. Both radio receivers must be
coherent: it is mandatory to use exactly same filters and same oscillators. Several SDR
units (Afedri, Red Pitaya) supports coherent reception, as well some mainstream RIGs
like K3, IC-7610.

2



Secondary WSJTX instance writes file to a specified directory, while primary reads it
and adds it to decoding. Frame diversity is also used, adding messages decoded by
secondary WSJTX and not by primary. File can be properly closed on time as enough
delay is provided by time diversity on primary WSJTX.
Real space diversity requires two separated antennas in order to fight fading. Polar-
ization diversity with one vertical and one horizontal antenna gives good results as
well.
While testing using IC-7610, benefits were visible by using any pair of antennas. Some
testing is needed to get feeling of how space diversity behaves on different bands at
different instances.
Normalization of signal strength was tried, but there were no benefits with Icom–7610.
Users with two receivers might need to adjust audio level to get best results.
Files generated by space and frame diversity are named with time, so they must be re-
moved every day to prevent false decoding. Those files written while primary WSJTX
was transmitted, or those written too late, are not removed by primary instance.

3 Synchronization

Main challenge in diversity implementation was how to synchronize audio samples
for different signals. Two instances of WSJTX do not capture audio at exactly same
time. TX stations also do not transmit exactly at the same time, the main reason being
the latency of the operating system.
Audio sample is sampled at 12000 Hz, so delay unit is 1/12000 seconds. WSJTX
FT4/FT8 decoder subtract decoded frames from audio sample, and diversity is pro-
cessing residual audio.
A sequence of 7 delays was found, that works fine for audio spectrum from 270 to 3000
Hz. It is based on a simple fact: if two signals are offset 50 degrees, then summing
them up when one is delayed 410 degrees, or 770 degrees are same as delaying of 50
degrees. Since FT8 symbol length of 1/6.3 seconds is long enough, small mistakes on
symbol change do not degrade decoding noticeably.

Power of two shifted tones:

(sin(ωt) + sin(ωt− φ))2

3



Different combinations were tested with tones from 270 to 3000 (2500) Hz with step 1
Hz and with phase shift 0 to 359 degrees with 1 degree step. When adding two signals
with up to 60 degrees shift, degradation from perfect match is marginal, while shift of
+/- 90 degrees is still usable.
Tables with best results for 3, 4 and 7 steps are given with percentage of samples where
match is found with shift up to given angle.

sequence bandwidth Hz 30 deg 60 deg 90 deg
0 3 6 270 – 2500 46.4 % 78.1 % 94.1 %
0 3 6 270 – 3000 47.2 % 80.9 % 95.2 %
0 4 8 270 – 2500 48.0 % 81.2 % 95.7 %
0 4 8 270 – 3000 45.4 % 75.5 % 90.4 %

0 7 14 270 – 2500 45.2 % 75.4 % 89.9 %
0 7 14 270 – 3000 45.4 % 77.1 % 91.7 %

Three shifts statistics. 0, 4, 8 is selected.

sequence bandwidth Hz 30 deg 60 deg 90 deg
0 3 6 10 270 – 2500 57.8 % 88.5 % 98.0 %
0 3 6 10 270 – 3000 57.9 % 89.8 % 98.4 %
0 3 6 9 270 – 2500 58.1 % 87.3 % 97.4 %
0 3 6 9 270 – 3000 58.5 % 89.5 % 97.9 %

0 4 7 10 270 – 2500 57.8 % 88.5 % 98.0 %
0 4 7 10 270 – 3000 57.9 % 89.8 % 98.4 %
0 4 8 12 270 – 2500 60.1 % 91.1 % 98.8 %
0 4 8 12 270 – 3000 56.7 % 85.1 % 94.5 %
0 4 8 17 270 – 2500 58.8 % 90.6 % 99.7 %
0 4 8 17 270 – 3000 55.3 % 84.4 % 94.9 %

Four shifts statistics. 0, 4, 7, 10 is selected.

sequence bandwidth Hz 16 deg 30 deg 60 deg 90 deg
0 10 17 20 25 30 39 270 – 3000 51.2 % 77.7 % 97.2 % 100.0 %
0 10 17 20 25 31 39 270 – 3000 50.8 % 76.9 % 97.2 % 100.0 %
0 10 20 26 31 39 17 270 – 3000 50.5 % 76.1 % 95.6 % 99.9 %
0 8 15 22 28 31 41 270 – 3000 50.5 % 76.7 % 97.7 % 100.0 %
0 8 15 22 29 31 41 270 – 3000 50.4 % 76.5 % 97.8 % 100.0 %

Seven shifts statistics. 0, 10, 17, 20, 25, 30, 39 is selected.

4 Operation

Just operate as with standard WSJTX.
The only visible change are frames marked with ”t/f/s“ on the right side, similar as
”a“ for apriori decoding.
Two configuration files are needed to enable data sharing between two WSJTX in-
stances, as well as directory for temporary files. Once per day stale files shall be
erased.
Start with sequence length 7. If CPU can not process frames on time, experiment with
faster version of diversity patch using 3 or 4 steps for synchronization. Slightly lower
number of messages can be decoded, compared to version with 7 steps.

4



Use normal decode. If deep decode is selected, processing time is noticeable longer,
so decoding might overlap with TX period. Apriori decoding works fine and shall be
selected.

4.1 Installation

Replace three files in src/wsjtx/lib directory and recompile WSJTX. Only jt9 is changed,
there are no changes to C++ code. Most users will try time diversity only and it works
with no additional configuration files.
For Windows users, jt9.exe will be provided as soon as somebody manages to compile
diversity patch.
Those with two radios and antennas can benefit from frame diversity, while only few
of us have possibility to use space diversity. Both demand two copies of WSJTX to run
(use -r name), and each needs separate configuration file.

4.2 Configuration file

If there is no configuration file, only time diversity is used.
Files wsdiv.txt shall be created in a writable directory where files ALL.TXT, wsjtx.log

5



and others are stored for each WSJTX instance.
File wsdiv.txt has a simple format. FT4 and FT8 data are separated, manly because
FT4 has shorter gap between RX and TX times. For space and time diversity, we need
to select length of sync sequence. Valid numbers are 0 (no diversity), 1 (marginal), 3,
4 and 7.
The first 10 lines contain numbers for FT4/FT8 to enable and specify sequence length
for time diversity, data writing, data reading for frame diversity and data reading for
space diversity. 0 is for disabled, valid values are 1, 3, 4 and 7 for space/time sequence
length. Selection is based on CPU power of computer, find a match producing decent
results. Decoded frames shall be shown on time, not during TX period.
Primary WSJTX needs time diversity so file is read after it was written by secondary
WSJTX.
Common directory where files are stored must be created when two receivers are
used. Two directory names are specified, one for file writing and one for reading.
Windows users shall put proper file name, like E:\div\ .
Test parameter is not used in this version of software.
Example for powerful CPU:

meaning primary secondary comment
time diversity FT4 7 3
time diversity FT8 7 0
data writing FT4 0 1
data writing FT8 0 1
frame diversity FT4 1 0
frame diversity FT8 1 0
space diversity FT4 7 0
space diversity FT8 7 0
test parameter FT4 0 0
test parameter FT8 8 0 0
write directory . /tmp/div/
read directory /tmp/div/ .

Example for less powerful CPU. A bit more work is allowed for FT8.

meaning primary secondary comment
time diversity FT4 3 0
time diversity FT8 4 0
data writing FT4 0 1
data writing FT8 0 1
frame diversity FT4 1 0
frame diversity FT8 1 0
space diversity FT4 4 0
space diversity FT8 7 0
test parameter FT4 0 0
test parameter FT8 8 0 0
write directory . /tmp/div/
read directory /tmp/div/ .

6



5 Code implementation

Author learned FORTRAN 4 in high school back in 1974/1975, and switched to Pascal
in 1976. Learning a bit of modern Fortran was a pleasant surprise, as well as trying to
understand how ft8 decoder really works.
Only three files are changed: ft8 decode.f90 and ft4 decode.f90 where real work is
done and decoder.f90 where ”t/f/s“ annotations are generated.
There are no changes to the program structure or to procedure parameters so porting
to new versions remains simple.
Brief overlook of code for FT4 (FT8 is similar) is given.
Several new variables are introduced, like:

real ddd(NMAX,5) ! save 4 periods + data read from disk
integer*2 dttablet(7), dttables(7) ! up to 7 shifts

When decoder is run for the first time, wsdiv.txt configuration is read and variables
set properly.

if(first) then
open(100,file=trim(data_dir)//’/wsdiv.txt’,status=’old’,err=299)
first=.false.

endif

Data file is opened before normal pass decodes are written.

if (fswriteok) then
open(101,file=trim(divwdir)//datetime//’.dd4’,access=’stream’,status=’REPLACE’,iostat=ioerr)
if (ioerr .gt. 0) divsav=.false. ! directory does not exist.

endif

There are new passes added to the main loop, and subtraction is activated for all three
passes.

if (divsav .or. tdivok .or. sdivok) dosubtract=.true. ! if diversity enabled...
do isp = 1,28 ! used to be 1,nsp .10..17 time diversity, 20 frame div, 21-27 space d

! isp=10 write dd to file, prepare data for time diversity
if (isp .eq. 10) then
write(101) 0,0,0,0,message,iaptype,qual ! mark end of decoded frames
write(101) dd
close(101) ! close fast, so other task can read after time diversity

endif

if (isp .gt. 10 .and. isp .le. (10+tdlen) ) then
dtoffset = dttablet(isp-10)
dd(1:NMAX-dtoffset) = ddd(1:NMAX-dtoffset,ipnow) +ddd(1+dtoffset:NMAX,ipold)

endif

! here comes space diversity: isp 20 reads files and prepare for space diversity

7



if (isp.eq.20) then
open(102,file=trim(divrdir)//datetime//’.dd4’,access=’stream’,status=’old’,iostat
do

read(102,IOSTAT=ioerr,err=199) smax,nsnr,xdt,f1,message,iaptype,qual
if ((smax .eq. 0.0) .and. (nsnr .eq. 0.0)) goto 197 ! end of frames

ldupe= ! find if already decoded
if(.not.ldupe ) then !pass to WSJTX as new decode

iaptype=iaptype+300 ! frame diversity
call this%callback(smax,nsnr,xdt,f1,message,iaptype,qual)

endif
enddo

! read residual audio from another jt9 instance
197 if (sdivok) then

read(102,IOSTAT=ioerr,err=199) ddd(:,5)
endif

endif

! passes 21 to 27 are for space diversity
if (isp .ge. 21 .and. isp .le. (20+sdlen) ) then
dtoffset = dttables(isp-20)
dd(1:NMAX-dtoffset) = ddd(1:NMAX-dtoffset,ipnow) +ddd(1+dtoffset:NMAX,5)

endif !isp 20..27

For normal passes, decodes shall be saved to file:

if (divsav .and. (isp.lt.10)) then ! frame diversity, s52d
write(101) smax,nsnr,xdt,f1,message,iaptype,qual

endif

New decodes after diversity are marked as t/s:

if (isp .lt. 20) then
iaptype=iaptype+100 ! time diversity

else
iaptype=ipatype+200 ! space diversity

endif

6 Future work

Described diversity is simplest possible from programming point of view, but de-
manding for CPU power.
As WSJTX decoder is working with power spectra, we might get as good results by
summing up power in frequency domain (cx variable in sync8 for FT8). This might
get similar results with noticeable less computation.
More integration into WSJTX would move configuration file into standard WSJTX
configuration menu. By propagating exact RX QRG to decoder we can stop time di-
versity during QRG change. WSJTX is well balanced and works fine on a different

8



range of computers. Diversity patch is CPU hungry and works only on top range
CPUs.
Space diversity can be made simpler, if WSJTX is capturing audio samples at exactly
same time, Modifying WSJTX to work with two radios at the same time is not likely
due to complexity of work to cover all possible combinations.
Unlike JT65 averaging, this implementation works on audio sample level. Other
modes might benefit as well. If diversity is incorporated into mainstream package,
then some additional parameters can be added to decoder functions, enabling a more
universal, readable and flexible approach.
External SDR programs can be modified to feed multiple standard WSJTX instances
with proper data. This is the way to handle 4 or more receivers configured for space
diversity.

7 Conclusion

WSJTX decoders are on the limit of what is possible with single receiver. Result of
using diversity on daily activity is positive, hence the patch deserves to enter main-
stream code in some later release.
HAMs with single receiver can benefit from time diversity, while those with two
might benefit from frame diversity.
Beside making several QSOs including rare DX, author learned a lot by studying
WSJTX code and enjoyed every step of it.

9


